
Chapter 1

Spatial aliasing and scale invariance

Landforms are not especially predictable. Therefore, crude PEF approximations are often
satisfactory. Wavefields are another matter. Consider the “shape” of the acoustic wavefronts
at this moment in the room you are in. The acoustic wavefield has statistical order in many
senses. If the 3-D volume is filled with waves emitted from a few point sources, then (with
some simplifications) what could be a volume of information is actually a few 1-D signals.
When we work with wavefronts we can hope for more dramatic, even astounding, results from
estimating properly.

The plane-wave model links an axis that is not aliased (time) with axes (space) that often
are.

We often characterize data from any region of (t ,x)-space as “good” or “noisy” when we
really mean it contains “few” or “many” plane-wave events in that region. Where regions are
noisy, there is no escaping the simple form of the Nyquist limitation. Where regions are good
we may escape it. Real data typically contains both kinds of regions. Undersampled data
with a broad distribution of plane waves is nearly hopeless. Undersampled data with a sparse
distribution of plane waves offer us the opportunity to resample without aliasing. Consider
data containing a spherical wave. The angular bandwidth in a plane-wave decomposition
appears hugeuntil we restrict attention to a small regionof the data. (Actually a spherical
wave contains very little information compared to an arbitrary wave field.) It can be very
helpful in reducing the local angular bandwidth if we can deal effectively with tiny pieces of
data. If we can deal with tiny pieces of data, then we can adapt to rapid spatial and temporal
variations. This chapter shows such tiny windows of data.

1.1 INTERPOLATION BEYOND ALIASING

A traditional method of data interpolation on a regular mesh is a four-step procedure: (1)
Set zero values at the points to be interpolated; (2)Fourier transform ; (3) Set to zero the
high frequencies; and (4) Inverse transform. This is a fine method and is suitable for many

1

2 CHAPTER 1. SPATIAL ALIASING AND SCALE INVARIANCE

applications in both one dimension and higher dimensions. However, this method fails to take
advantage of our prior knowledge that seismic data has abundant fragments of plane waves
that link an axis that is not aliased (time) to axes that often are (space).

1.1.1 Interlacing a filter

The filter below can be designed despite alternate missing traces. This filter destroys plane
waves. If the plane wave should happen to pass halfway between the “d” and the “e”, those
two points could interpolate the halfway point, at least for well-sampled temporal frequencies,
and the time axis should always be well sampled. For example,d = e = −.5 would almost
destroy the plane wave and it is an aliased planewave for its higher frequencies.

a · b · c · d · e
· · · · · · · · ·

· · · · 1 · · · ·

(1.1)

We could use modulepef on page ?? to find the filter (1.1), if we set up the lag tablelag

appropriately. Then we could throw away alternate zeroed rows and columns (rescale the lag)
to get the filter

a b c d e
· · 1 · ·

(1.2)

which could be used with subroutinemis1() on page ??, to find the interleaved data because
both the filters (1.1) and (1.2) have the same dip characteristics.

Figure 1.1 shows three plane waves recorded on five channels and the interpolated data.
Both the original data and the interpolated data can be described as “beyondaliasing,” because

Figure 1.1: Left is five signals, each showing three arrivals. With the data shown on the left
(and no more), the signals have been interpolated. Three new traces appear between each
given trace, as shown on the right.lal-lace390[ER]

on the input data the signal shifts exceed the signal duration. The calculation requires only

1.1. INTERPOLATION BEYOND ALIASING 3

a few seconds of a two-stage least-squares method, in which the first stage estimates a PEF
(inverse spectrum) of the known data, and the second uses the PEF to estimate the missing
traces. Figure 1.1 comes from PVI which introduces the clever method described above. We
will review how that was done and examine the F90 codes that generalize it toN-dimensions.
Then we’ll go on to more general methods that allow missing data in any location. Before
the methods of this section are applied to field data for migration, data must be broken into
many overlapping tiles of size about like those shown here and the results from each tile pieced
together. That is described later in chapter 9.

A PEF is like a differential equation. The more plane-wave solutions you expect, the more
lags you need on the data. Returning to Figure 1.1, the filter must cover four traces (or more)
to enable it to predict three plane waves. In this case,na=(9,4) . As usual, the spike on the
2-D PEF is atcenter=(5,1) . We see the filter is expanded by a factor ofjump=4 . The data
size isnd=(75,5) andgap=0 . Before looking at the codelace on this page for estimating
the PEF, it might be helpful to recall the basic utilitiesline2cart andcart2line on page ??
for conversion between a multidimensional space and the helix filter lag. We need to sweep
across the whole filter and “stretch” its lags on the 1-axis. We do not need to stretch its lags
on the 2-axis because the data has not yet been interlaced by zero traces.

module lace { # find PEF on interlaced data
use createhelixmod
use bound
use pef
use cartesian

contains
function lace_pef(dd, jump, nd, center, gap, na) result(aa) {

type(filter) :: aa
integer, intent(in) :: jump
integer, dimension(:), intent(in) :: nd, center, gap, na
real, dimension(:), pointer :: dd # input data
integer, dimension(:), pointer :: savelags # holding place
integer, dimension(size(nd)) :: ii
integer :: ih, nh, lag0, lag
aa = createhelix(nd, center, gap, na); nh = size(aa%lag)
savelags => aa%lag; allocate(aa%lag(nh)) # prepare interlaced helix
call cart2line(na, center, lag0)
do ih = 1, nh { # Sweep thru the filter.

call line2cart(na, ih+lag0, ii)
ii = ii - center; ii(1) = ii(1)*jump # Interlace on 1-axis.
call cart2line(nd, ii+1, lag)
aa%lag(ih) = lag - 1
}

call boundn(nd, nd, (/ na(1)*jump, na(2:) /), aa) # Define aa.mis
call find_pef(dd, aa, nh*2) # Estimate aa coefs
deallocate(aa%lag); aa%lag => savelags # Restore filter lags

}
}

The line ii(1)=ii(1)*jump means we interlace the 1-axis but not the 2-axis because the
data has not yet been interlaced with zero traces. For a 3-D filteraa(na1,na2,na3) , the

4 CHAPTER 1. SPATIAL ALIASING AND SCALE INVARIANCE

somewhat obtuse expression(/na(1)*jump, na(2:)/) is a three component vector con-
taining(na1*jump, na2, na3) .

After the PEF has been found, we can get missing data in the usual way with with module
mis2 on page ??.

1.2 MULTISCALE, SELF-SIMILAR FITTING

Large objects often resemble small objects. To express this idea we useaxis scalingand we
apply it to the basic theory of prediction-error filter (PEF) fitting and missing-data estimation.

Equations (1.3) and (1.4) compute the same thing by two different methods,r = Ya and
r = Ay. When it is viewed as fitting goals minimizing||r || and used along with suitable
constraints, (1.3) leads to finding filters andspectra, while (1.4) leads to findingmissing
data. 

r1

r2

r3

r4

r5

r6

r7

r8

r9


=



y2 y1

y3 y2

y4 y3

y5 y4

y6 y5

y3 y1

y4 y2

y5 y3

y6 y4



[
a1

a2

]
or

[
r1

r2

]
=

[
Y1

Y2

]
a (1.3)



r1

r2

r3

r4

r5

r6

r7

r8

r9


=



a2 a1 · · · ·

· a2 a1 · · ·

· · a2 a1 · ·

· · · a2 a1 ·

· · · · a2 a1

a2 · a1 · · ·

· a2 · a1 · ·

· · a2 · a1 ·

· · · a2 · a1





y1

y2

y3

y4

y5

y6

 or

[
r1

r2

]
=

[
A1

A2

]
y

(1.4)

A new concept embedded in (1.3) and (1.4) is that one filter can be applicable for differ-
ent stretchings of the filter’s time axis. One wonders, “Of all classes of filters, what subset
remains appropriate for stretchings of the axes?”

1.2. MULTISCALE, SELF-SIMILAR FITTING 5

1.2.1 Examples of scale-invariant filtering

When we consider all functions with vanishing gradient, we notice that the gradient vanishes
whether it is represented as (1,−1)/1x or as (1,0,−1)/21x. Likewise for the Laplacian, in
one dimension or more. Likewise for the wave equation, as long as there is no viscosity and
as long as the time axis and space axes are stretched by the same amount. The notion of “dip
filter” seems to have no formal definition, but the idea that the spectrum should depend mainly
on slope in Fourier space implies a filter that is scale-invariant. I expect the most fruitful
applications to be withdip filter s.

Resonance orviscosityor damping easily spoils scale-invariance. The resonant frequency
of a filter shifts if we stretch the time axis. The difference equations

yt −αyt−1 = 0 (1.5)

yt −α2yt−2 = 0 (1.6)

both have the same solutionyt = y0α
−t . One difference equation has the filter (1,−α), while

the other has the filter (1,0,−α2), andα is not equal toα2. Although these operators differ,
whenα ≈ 1 they might provide the same general utility, say as a roughening operator in a
fitting goal.

Another aspect to scale-invariance work is the presence of “parasitic” solutions, which ex-
ist but are not desired. For example, another solution toyt − yt−2 = 0 is the one that oscillates
at the Nyquist frequency.

(Viscosity does not necessarily introduce an inherent length and thereby spoil scale-invariance.
The approximate frequency independence of sound absorption per wavelength typical in real
rocks is a consequence of physical inhomogeneity at all scales. See for exampleKjartans-
son’s constant Qviscosity, described inIEI . Kjartansson teaches that the decaying solutions
t−γ are scale-invariant. There is no “decay time” for the functiont−γ . Differential equations
of finite order and difference equations of finite order cannot producet−γ damping, yet we
know that such damping is important in observations. It is easy to manufacturet−γ damping
in Fourier space; exp[(−i ω)γ+1] is used. Presumably, difference equations can make reason-
able approximations over a reasonable frequency range.)

1.2.2 Scale-invariance introduces more fitting equations

The fitting goals (1.3) and (1.4) have about double the usual number of fitting equations. Scale-
invarianceintroduces extra equations. If the range of scale-invariance is wide, there will be
more equations. Now we begin to see the big picture.

1. Refining a model mesh improves accuracy.

2. Refining a model mesh makes empty bins.

3. Empty bins spoil analysis.

6 CHAPTER 1. SPATIAL ALIASING AND SCALE INVARIANCE

4. If there are not too many empty bins we can find a PEF.

5. With a PEF we can fill the empty bins.

6. To get the PEF and to fill bins we need enough equations.

7. Scale-invariance introduces more equations.

An example of these concepts is shown in Figure 1.2. Additionally, when we have a PEF, often

Figure 1.2: Overcoming aliasing with multiscale fitting.lal-mshole90[ER]

we still cannot find missing data because conjugate-direction iterations do not converge fast
enough (to fill large holes). Multiscale convolutions should converge quicker because they are
like mesh-refinement, which is quick. An example of these concepts is shown in Figure 1.3.

1.2.3 Coding the multiscale filter operator

Equation (1.3) shows an example where the first output signal is the ordinary one and the
second output signal used a filter interlaced with zeros. We prepare subroutines that allow for
more output signals, each with its own filter interlace parameter given in the tablejump(ns) .
Each entry in the jump table corresponds to a particular scaling of a filter axis. The number of
output signals isns and the number of zeros interlaced between filter points for thej -th signal
is jump(j)-1 .

The multiscale helix filter is defined in modulemshelix on the current page, analogous
to the single-scale modulehelix on page ??. A new functiononescale extracts our usual
helix filter of one particular scale from the multiscale filter.

1.2. MULTISCALE, SELF-SIMILAR FITTING 7

Figure 1.3: Large holes are filled
faster with multiscale operators.
lal-msiter90 [ER]

module mshelix { # multiscale helix filter type
use helix
type msfilter {

real, dimension(:), pointer :: flt # (nh) filter coefficients
integer, dimension(:, :), pointer :: lag # (nh,ns) filter (lags,scales)
logical, dimension(:, :), pointer :: mis # (nd,ns) boundary conditions

}
contains

subroutine msallocate(msaa, nh, ns) {
type(msfilter) :: msaa
integer :: nh, ns
allocate(msaa%flt(nh), msaa%lag(nh, ns))
msaa%flt = 0.; nullify(msaa%mis)
}

subroutine msdeallocate(msaa) {
type(msfilter) :: msaa
deallocate(msaa%flt, msaa%lag)
if(associated(msaa%mis)) deallocate(msaa%mis)
}

subroutine onescale(i, msaa, aa) { # Extract single-scale filter.
integer, intent (in) :: i
type(filter) :: aa
type(msfilter) :: msaa
aa%flt => msaa%flt
aa%lag => msaa%lag(:, i)
if(associated(msaa%mis))

aa%mis => msaa%mis(:, i)
else

nullify(aa%mis)

8 CHAPTER 1. SPATIAL ALIASING AND SCALE INVARIANCE

}
}

We create a multscale helix with modulecreatemshelixmod on the current page. An ex-
panded scale helix filter is like an ordinary helix filter except that the lags are scaled according
to a jump .

module createmshelixmod { # Create multiscale helix filter lags and mis
use mshelix
use createhelixmod
use bound
contains

function createmshelix(nd, center, gap, jump, na) result(msaa) {
type(msfilter) :: msaa # needed by mshelicon.
integer, dimension(:), intent(in) :: nd, na # data and filter axes
integer, dimension(:), intent(in) :: center # normally (na1/2,na2/2,...,1)
integer, dimension(:), intent(in) :: gap # normally (0, 0, 0,...,0)
integer, dimension(:), intent(in) :: jump # jump(ns) stretch scales
type(filter) :: aa
integer :: is, ns, nh, n123
aa = createhelix(nd, center, gap, na)
ns = size(jump); nh = size(aa%lag); n123 = product(nd)
call msallocate(msaa, nh, ns)
do is = 1, ns

msaa%lag(:,is) = aa%lag(:)*jump(is) # set lags for expanded scale
call deallocatehelix(aa)
allocate(msaa%mis(n123, ns))
do is = 1, ns { # for all scales

call onescale(is, msaa, aa); nullify(aa%mis) # extract a filter
call boundn(nd, nd, na*jump(is), aa) # set up its boundaries
msaa%mis(:, is) = aa%mis; deallocate(aa%mis) # save them

}
}

}

First we examine code for estimating a prediction-error filter that is applicable at many
scales. We simply invoke the usual filter operatorhconest on page ?? for each scale.

module mshconest { # multi-scale helix convolution, adjoint is the filter.
use mshelix
use hconest
use helix
integer, private :: nx, ns
real, dimension(:), pointer :: x
type(msfilter) :: msaa

#% _init(x, msaa)
nx = size(x); ns = size(msaa%lag, 2)

#% _lop(a(:), y(nx,ns))
integer :: is, stat1
type (filter) :: aa
do is = 1, ns {

call onescale (is, msaa, aa)
call hconest_init(x, aa)

1.2. MULTISCALE, SELF-SIMILAR FITTING 9

stat1 = hconest_lop(adj, .true., a, y(:,is))
}

}

Themultiscale prediction-error filter finding subroutine is nearly identical to the usual
subroutinefind_pef() on page ??. (That routine cleverly ignores missing data while esti-
mating a PEF.) To easily extendpef to multiscale filters we replace its call to the ordinary
helix filter modulehconest on page ?? by a call tomshconest .

module mspef { # Find multi-scale prediction-error filter (helix magic)
use mshconest
use cgstep_mod
use solver_mod

contains
subroutine find_pef(yy, aa, niter) {

integer, intent(in) :: niter
real, dimension(:), pointer :: yy
type(msfilter) :: aa
integer :: is
real, dimension(size(yy), size(aa%lag, 2)) :: dd
do is = 1, size(dd, 2)

dd(:,is) = -yy
call mshconest_init(yy, aa)
call solver(mshconest_lop, cgstep, aa%flt, pack(dd, .true.),

niter, x0= aa%flt)
call cgstep_close()
}

}

The purpose ofpack(dd,.true.) is to produce the one-dimensional array expected by
solver() on page ??.

Similar code applies to the operator in (1.4) which is needed for missing data problems.
This is likemshconest on the facing page except the adjoint is not the filter but the input.

module mshelicon { # Multi-scale convolution
use mshelix
use helicon
integer :: nx, ns
type(msfilter) :: msaa

#% _init (nx, ns, msaa)
#% _lop (xx(nx), yy(nx, ns))

integer :: is, stat1
type (filter) :: aa
do is = 1, ns {

call onescale(is, msaa, aa)
call helicon_init(aa)
stat1 = helicon_lop(adj, .true., xx, yy(:,is))
}

}

The multiscale missing-data modulemsmis2 is just like the usual missing-data modulemis2

on page ?? except that the filtering is done with the multiscale filtermshelicon on this page.

10 CHAPTER 1. SPATIAL ALIASING AND SCALE INVARIANCE

module msmis2 { # multi-scale missing data interpolation
use mshelicon
use cgstep_mod
use solver_mod

contains
subroutine mis1(niter, nx, ns, xx, aa, known) {

integer, intent(in) :: niter, nx, ns
logical, dimension(:), intent(in) :: known
type(msfilter), intent(in) :: aa
real, dimension(:), intent(in out) :: xx
real, dimension(nx*ns) :: dd
dd = 0.
call mshelicon_init(nx,ns, aa)
call solver(mshelicon_lop, cgstep, niter= niter, x = xx, dat = dd,

known = known, x0 = xx)
call cgstep_close()

}
}

1.3 References

Canales, L.L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc. Explor. Geo-
phys., Expanded Abstracts, 525-527.

Rothman, D., 1985, Nonlinear inversion, statistical mechanics, and residual statics estima-
tion: Geophysics,50, 2784-2798

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics,56, 785-794.

268 CHAPTER 1. SPATIAL ALIASING AND SCALE INVARIANCE

Index

alias, 1, 2
axis scaling, 4

Canales, 10
constant Q, 5
createmshelixmod module, 8

dip filter, 5

filter
dip, 5
interlaced, 2
multiscale prediction-error, 8

Fourier transform, 1

goal
multiscale self-similar, 4

IEI, 5
index, 11
interlacing a filter, 2

Kjartansson, 5

lace module, 3

missing data, 4
module

createmshelixmod , create multiscale
helix, 8

lace , fill missing traces by rescaling
PEF, 3

mshelix , multiscale helix filter defini-
tion, 6

msmis2 , multiscale missing data, 9
mspef , multiscale PEF, 9

mshconest operator module, 8
mshelicon operator module, 9
mshelix module, 6
msmis2 module, 9

mspef module, 9
multiscale fitting, 4
multiscale prediction-error filter, 9

operator
mshconest , multiscale convolution, ad-

joint is the filter, 8
mshelicon , multiscale convolution, ad-

joint is the input, 9

Q, 5

Rothman, 10

scale invariance, 1
self-similar fitting, 4
spatial aliasing, 1
spectra, 4
Spitz, 10
stretching, 4

viscosity, 5

269

270 INDEX

